
1. Exercises from Sections 1.8-2.1

Problem 1. We call f : S → Rn Holder continuous with exponent λ iff there exists constants

C, λ > 0 such that |f(x)− f(y)| < C|x− y|λ for every x, y ∈ S. Show that f is uniformly continuous.

Proof. (1) Fix ε > 0.

(2) NTS for any x, y ∈ S, we can force |f(x)− f(y)| < ε whenever |x− y| < δ

(3) By Holder continuity, |f(x)− f(y)| < C|x− y|λ for all x, y ∈ S.

(4) Pick δ = (ε/C)1/λ, then for any x, y ∈ S such that |x− y| < δ we have

|f(x)− f(y)| < C|x− y|λ < C((ε/C)1/λ)λ = ε

�

Problem 2. Show that if f : S → Rm is uniformly continuous on S and {xk} is a Cauchy sequence

in S, then {f(xk)} is Cauchy. Give an example of a Cauchy sequence {xk} ⊆ (0,∞) and a continuous

function f : (0,∞)→ R such that {f(xk)} is not Cauchy.

Proof. (1) Assume that we can force |xk − xl| < δ by picking k, l > N sufficiently large

(2) Fix ε > 0

(3) By uniform continuity, we can force |f(x)− f(y)| < ε for every x, y ∈ S such that |x− y| < δ

(4) Now k, l > N implies |xk − xl| < δ, so |f(xk)− f(xl)| < ε whenever k, l > N .

To find a counter example in the case that f is only continuous, consider the function f(x) = 1/x.

This is continuous on (0,∞) because |1/x−1/y| = |x−y| 1
|xy| < |x−y|M

2 < ε whenever |x−y| < ε/M2,

where 1/M = min {x, y}. Now consider the sequence xk = 1/k. This sequence is Cauchy (show this

fact!). Now for any N > 0 pick l > N , then we notice that |f(xk)− f(xl)| = |k− l| > ε by picking k > l

sufficiently large. �

Problem 3. Suppose that f is differentiable on an open interval I and that f ′(x) > 0 for all x ∈ I
except for finitely many points at which f ′(x) = 0. Show that f is strictly increasing.

Proof. Suppose not, then there exist points a, b ∈ I with a < b such that f(b) ≤ f(a). If

f(b) < f(a) then immediately obtain a contradiction to the mean value theorem - there would exist

some c ∈ I such that f ′(c) = f(b)−f(a)
b−a < 0. If f(b) = f(a) then there exists a point c ∈ (a, b) such

that f ′(c) = 0. If c were a maximum, then f(c) > f(a) = f(b) hence by the intermediate value

theorem there exists a point c′ ∈ (c, b) such that f(c′) < 0 (and similarly if c were a minimum).

We can only conclude that f(c) = f(a) = f(b) and f ′(c) = 0. But now there are points d ∈ (a, c)

and d′ ∈ (c, b) such that f ′(d) = f ′(d′) = 0, and by an identical argument these must also satisfy

f(d) = f(d′) = f(c) = f(a) = f(b). Continuing inductively would give an infinite set {ck} of points at

which f ′(ck) = 0, contradicting our initial hypothesis. �

Problem 4. Define h(x) by h(x) = x2 for all x ∈ Q and h(x) = 0 otherwise. Show that h is

differentiable at x = 0, even though it is discontinuous everywhere else

Proof. We showed earlier in the term that a function similar to this one is continuous at zero (but

notice it is not differentiable at zero!).

In light of proposition 2.5 we guess that h′(0) = 0 and fix ε > 0. Consider x > 0, then∣∣∣∣h(x)− h(0)

x

∣∣∣∣ < |x2/x| = |x| < ε as x→ 0

Similarly, if x < 0 then: ∣∣∣∣h(−x)− h(0)

−x

∣∣∣∣ < |(−x)2/(−x)| = |x| < ε as x→ 0

1



2

We therefore conclude that the derivative h′(0) exists and is equal to zero. �


