1. Exercises from Sections 1.8-2.1

Problem 1. We call $f: S \rightarrow \mathbb{R}^{n}$ Holder continuous with exponent λ iff there exists constants $C, \lambda>0$ such that $|f(x)-f(y)|<C|x-y|^{\lambda}$ for every $x, y \in S$. Show that f is uniformly continuous.

Proof. (1) Fix $\epsilon>0$.
(2) NTS for any $x, y \in S$, we can force $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$
(3) By Holder continuity, $|f(x)-f(y)|<C|x-y|^{\lambda}$ for all $x, y \in S$.
(4) Pick $\delta=(\epsilon / C)^{1 / \lambda}$, then for any $x, y \in S$ such that $|x-y|<\delta$ we have

$$
|f(x)-f(y)|<C|x-y|^{\lambda}<C\left((\epsilon / C)^{1 / \lambda}\right)^{\lambda}=\epsilon
$$

Problem 2. Show that if $f: S \rightarrow \mathbb{R}^{m}$ is uniformly continuous on S and $\left\{x_{k}\right\}$ is a Cauchy sequence in S, then $\left\{f\left(x_{k}\right)\right\}$ is Cauchy. Give an example of a Cauchy sequence $\left\{x_{k}\right\} \subseteq(0, \infty)$ and a continuous function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $\left\{f\left(x_{k}\right)\right\}$ is not Cauchy.

Proof. (1) Assume that we can force $\left|x_{k}-x_{l}\right|<\delta$ by picking $k, l>N$ sufficiently large
(2) Fix $\epsilon>0$
(3) By uniform continuity, we can force $|f(x)-f(y)|<\epsilon$ for every $x, y \in S$ such that $|x-y|<\delta$
(4) Now $k, l>N$ implies $\left|x_{k}-x_{l}\right|<\delta$, so $\left|f\left(x_{k}\right)-f\left(x_{l}\right)\right|<\epsilon$ whenever $k, l>N$.

To find a counter example in the case that f is only continuous, consider the function $f(x)=1 / x$. This is continuous on $(0, \infty)$ because $|1 / x-1 / y|=|x-y| \frac{1}{|x y|}<|x-y| M^{2}<\epsilon$ whenever $|x-y|<\epsilon / M^{2}$, where $1 / M=\min \{x, y\}$. Now consider the sequence $x_{k}=1 / k$. This sequence is Cauchy (show this fact!). Now for any $N>0$ pick $l>N$, then we notice that $\left|f\left(x_{k}\right)-f\left(x_{l}\right)\right|=|k-l|>\epsilon$ by picking $k>l$ sufficiently large.

Problem 3. Suppose that f is differentiable on an open interval I and that $f^{\prime}(x)>0$ for all $x \in I$ except for finitely many points at which $f^{\prime}(x)=0$. Show that f is strictly increasing.

Proof. Suppose not, then there exist points $a, b \in I$ with $a<b$ such that $f(b) \leq f(a)$. If $f(b)<f(a)$ then immediately obtain a contradiction to the mean value theorem - there would exist some $c \in I$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}<0$. If $f(b)=f(a)$ then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=0$. If c were a maximum, then $f(c)>f(a)=f(b)$ hence by the intermediate value theorem there exists a point $c^{\prime} \in(c, b)$ such that $f\left(c^{\prime}\right)<0$ (and similarly if c were a minimum). We can only conclude that $f(c)=f(a)=f(b)$ and $f^{\prime}(c)=0$. But now there are points $d \in(a, c)$ and $d^{\prime} \in(c, b)$ such that $f^{\prime}(d)=f^{\prime}\left(d^{\prime}\right)=0$, and by an identical argument these must also satisfy $f(d)=f\left(d^{\prime}\right)=f(c)=f(a)=f(b)$. Continuing inductively would give an infinite set $\left\{c_{k}\right\}$ of points at which $f^{\prime}\left(c_{k}\right)=0$, contradicting our initial hypothesis.

Problem 4. Define $h(x)$ by $h(x)=x^{2}$ for all $x \in \mathbb{Q}$ and $h(x)=0$ otherwise. Show that h is differentiable at $x=0$, even though it is discontinuous everywhere else

Proof. We showed earlier in the term that a function similar to this one is continuous at zero (but notice it is not differentiable at zero!).

In light of proposition 2.5 we guess that $h^{\prime}(0)=0$ and fix $\epsilon>0$. Consider $x>0$, then

$$
\left|\frac{h(x)-h(0)}{x}\right|<\left|x^{2} / x\right|=|x|<\epsilon \quad \text { as } x \rightarrow 0
$$

Similarly, if $x<0$ then:

$$
\left|\frac{h(-x)-h(0)}{-x}\right|<\left|(-x)^{2} /(-x)\right|=|x|<\epsilon \quad \text { as } x \rightarrow 0
$$

We therefore conclude that the derivative $h^{\prime}(0)$ exists and is equal to zero.

